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INTRODUCTION

Thin-walled bars, due to the high slenderness 
of their walls, are sensitive to the loss of stabil-
ity phenomenon, which is described as a sudden 
change in shape (deformation) of a structural ele-
ment under critical load. There are distinguished 
three basic forms of loss of stability [1, 2], 
namely global local and distorsional. Global 
beam instability was developed by Vlasov [3] as a 
well-known Vlasov beam theory, which is based 
on previous work of Timoshenko [4] and dedi-
cated to the thin-walled steel elements with the 
open cross-section. The basis to calculate local 
buckling comes from the theory of plates from [5] 
and the experimental corrections done by Win-
ter for the preparation of the fi rst edition of the 
American Iron and Steel Institute Specifi cation 
for the Design of Cold-Formed Steel Structural 
Members [6]. For practical reasons, the concepts 
of the eff ective width and eff ective thickness 
were proposed and introduced in Eurocode [7]. 
A description of the thin-walled element theory 
is also described in the works [8, 9]. Despite of 

cold-formed steel elements bearing capacity pro-
cedures are widely known in engineering prac-
tice, there is still a place for further investigations 
for the cross-sections with one axis of symmetry, 
such as sigma cross-sections.

As it can be observed, the list of publications 
referring to sigma cross-sections analysis is very 
limited. Although, in recent years there has been 
an increased interest in solutions related to thin-
walled, cold-formed steel structures. The latest 
study by [10] was conducted to describe the 
behaviour of compressed thin- walled steel col-
umns with a sigma cross-section. The authors 
of [11] investigated the buckling behaviour of 
cold-formed steel sigma beam-column mem-
bers. In their study, the analyses indicate that the 
failure modes are mainly depending on the stress 
distribution of the cross-section. The buckling 
analyses of cold-formed steel sigma cross-sec-
tions in purlin- sheeting systems subjected to 
uniformly distributed uplift load were conducted 
in [12]. Axially loaded cold-formed sigma pro-
fi les were investigated in order to defi ne their 
local and distortional buckling behaviour [13]. 
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An analytical approach was devised for cal-
culating the bending–torsion coupled random 
response of thin-walled beams with monosym-
metrical cross-sections in [14]. The authors of 
[15] investigated the Goldenvejzer solution for 
the system of governing differential equations 
of stability of centrically loaded members with 
rigid open cross-sections. Based on a combina-
tion of the Vlasov assumption and the Kirchhoff 
assumption of plate/shell theory, an analytical 
formulation for the torsional warping function 
of a thin-walled open-section beam is proposed 
in [16]. In [17] the authors investigated a simple 
thin-walled beam carrying a uniformly distrib-
uted transverse load. The post-buckling analysis 
of thin-walled elements with open sections was 
investigated in [18, 19]. Finite element analysis 
of thin-walled open section beam structures was 
presented in [20]. Furthermore, other research in 
the field of thin-walled elements includes work 
presented in [21, 22, 23, 24]. However, due to 
many difficult-to-solve problems, that still have 
not been discovered despite many years of re-
search, engineers’ usage of thin-walled mono-
symmetric members is significantly limited. 
Studies mostly concern topics related to buck-
ling analysis, however, there is a gap in the 
knowledge of stress analysis of sigma cross-
sections. In engineering practice, it is common 
to neglect the free and restrained torsion com-
ponents, however, in this paper, the emphasis is 
placed on analysing the contribution of both free 
and restrained torsion to the stress block. For 
these reasons, in this paper, the stress analysis of 
a sigma cross-section is carried out. 

For bending beams of the sigma section, load-
ed in a plane parallel to the web and not passing 
through the shear centre, normal stresses from 
torsional warping σω occur in addition to the nor-
mal stresses from bending σx. The normal stresses 
are accompanied by shear stresses from torsional 
warping τω, uniformly distributed over the wall 
thickness, which are associated by shear stresses 
from free torsion τt.

In the Vlasov beam theory of restrained tor-
sion, it is assumed that the relationships derived 
for free torsion are valid. The angle of rotation is 
defined as:
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where: MT – torsional moment, G – Kirchoff’s 
modulus, IT – torsional moment of inertia.

In the case of a profile, which consists of 
many rectangular parts, the torsional moment of 
inertia is roughly equal to the sum of torsional 
moments of individual walls:
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where: δ – thickness of a wall, – width of each wall 
into which the profile can be separated,

 s – experimental coefficient, which de-
pends on the shape of a cross-section.

The experimental coefficient  is based on re-
sults obtained from a laboratory tests by Föppl 
[25], who computed this parameter for torsion of 
a narrow rectangular cross-section.

Shear stresses resulting from free torsion, 
constant in all sections, are defined by formula:
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𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(3)

The longitudinal displacement in the coordi-
nate system (x, y, z) of the member section is pro-
portional to the sectional coordinate:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(4)

The axis of rotation during torsion with con-
strained warping passes through the shear cen-
ter. During deformation, all the remaining fibers, 
except those on the axis of rotation, are curved. 
Since the warping due to varying torsion angles 
is not constant, elongations εω = du/dx and normal 
stresses from warping torsion σω = Eεω arise in the 
direction of the longitudinal axis of the member. 
Under the influence of variable normal stresses 
from warping torsion εω, shear stresses from 
warping torsion τω are evenly distributed over the 
thickness of the walls.

The lack of freedom of deplaning induces a 
normal stresses from warping torsion equal to:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(5)

where: E – Young’s modulus, φ – section torsion 
angle.

Additionally:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(6)

The normal stresses due to bi-moment are 
calculated from the formula:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(7)



Advances in Science and Technology Research Journal 2022, 16(4), 106–118

108

The shear stresses from warping torsion are 
calculated according to the following formula:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(8)

where: Bω – bi-moment, Mω – warping-torsional 
moment, Sω – sectional static moment, 
Iω – sectional moment of inertia, t – wall 
thickness, ω – sectorial coordinate.

The warping-torsional moment is described 
as:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(9)

Bi-moment is defined as pairs of moments of 
same amplitude and opposite direction:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(10)

The formula for calculating normal stresses 
due to normal forces with bending and torsion for 
a member is:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(11)

where: σx
N – normal stresses from compression/

tension, σx
My – normal stresses from bend-

ing in respect to “y” axis, σx
Mz – normal 

stresses from bending in respect to “z” 
axis, σx

Bω – normal stresses from torsional 
warping.

The formula (11) can also be presented as:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  

(12)

where: N – normal force, A – area of the cross-
section, My – bending moment in respect 
to “y” axis, Iy – moment of inertia in re-
spect to “y” axis, z – distance from cross-
section’s centre of gravity in respect to “y” 
axis, Mz – bending moment in respect to 
“z” axis, Iz – moment of inertia in respect 
to “z” axis, y – distance from cross-sec-
tion’s centre of gravity in respect to “z” 
axis, Bω – bi-moment, Iω – a sectional mo-
ment of inertia, ω – sectorial coordinate.

The first three components of the equation 
(12) correspond to the beam theory regarding 
compression in combination with bending. The 
last component contains the bi-moment Bω, the 
sectional moment of inertia Iω, and the sectorial 
coordinate ω.

Formula (12) is a generalization of eccentric 
compression, where the last component defines 
the normal stresses due to warping. These stresses 
are distributed in the cross-section according to 
the concept of the sectoral surfaces.

The formula for calculating shear stresses 
due to shear forces with bending and torsion for a 
member with an open profile is:

Θ =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇

𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
 

 

𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎�
𝑠𝑠𝑠𝑠𝛿𝛿𝛿𝛿2

3
 

 

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝛿𝛿𝛿𝛿
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = −Θ𝜔𝜔𝜔𝜔 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 = 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸 ∙
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

Θ =
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

 

 

𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔 =
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔 =
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝑡𝑡𝑡𝑡

 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑑𝑑𝑑𝑑𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

= −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑3𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥3

 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = −𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
𝑑𝑑𝑑𝑑2𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2

 

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 ± 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔  

 

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =
𝑁𝑁𝑁𝑁
𝐴𝐴𝐴𝐴

±
𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ±

𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧

𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
𝑦𝑦𝑦𝑦 ±

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

𝜔𝜔𝜔𝜔 

 

𝜏𝜏𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧 ± 𝜏𝜏𝜏𝜏𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 ± 𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡  (13)
where: τVz – shear stresses from forces in “z” axis 

direction, τVy – shear stresses from forces in 
“y” axis direction, τMω – shear stresses from 
warping-torsional moment, τMt – shear 
stresses from torsional moment.

The formula (13) can also be presented as:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(14)

where: Vz – shear force in “z” axis direction, Sy – 
moment of stability in respect to “y” axis,  
Iy – moment of inertia in respect to “y” 
axis, Vy – shear force in “y” axis direction, 
Sz – moment of stability in respect to “z” 
axis, Iz – moment of inertia in respect to 
“z” axis, Mω – warping-torsional moment,  
Sω – sectional static moment, Iω –a sec-
tional moment of inertia, MT – torsional 
moment, IT – a torsional moment of iner-
tia,  t – wall thickness.

PROBLEM FORMULATION

The purpose of the research conducted in this 
paper was to determine the stress state when con-
sidering a load located at the upper flange and not 
passing through the shear centre. This approach 
is a departure from the well-known Vlasov beam 
theory, which assumes that the load is located in 
a plane passing through the shear centre. The es-
timation of the contribution of normal and shear 
stresses from free and restrained torsion to the sec-
tion was carried out for cold-formed beams made 
of sigma cross-sections Σ200×2.00, Σ200×2.50, 
and Σ200×3.00. The calculations were conducted 
for members with the static scheme of a simply 
supported beam. The beam span was assumed to 
be 4 m. A uniform load of 2.00 kN/m along the 
entire length was considered. The load was ap-
plied to the upper flange of the beam in three dif-
ferent plane locations. The first case refers to the 
situation, where linear load  passes through the 
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middle of the fl ange width. The second one pass-
es through the quarter of the fl ange width, and 
the third passes near the web of the beam. The 
last one is recommended by EC3 1–3 for gravi-
tational load case, due to high fl exural sensibil-
ity of the upper fl ange. Henceforth, an additional 
torsional moment was considered. The structural 
elements were made of S350 steel grade. Several 
geometrical characteristics have been determined 
following the sigma profi le catalogue [26]. Figure 
1 presents the geometrical and Figure 2 the load 
cross-sections schemes of analysed problem.

STRESS ANALYSIS IN CONTEXT 
OF VLASOV THEORY

All numerical calculations were carried out 
for a computational model in accordance with the 
currently relevant Eurocode, characterised by fl at 
walls with sharp edges. The stress values were 
calculated for ten points located in the mid span 
cross-section of the beam, shown in Figure 2.

Consideration of additional torsion

Linear uniformly distributed load  was locat-
ed in the distance  as shown in Figure 3. The value 
of  was assumed as:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(15)

Linear uniformly distributed load caused the 
additional torsional moment:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(16)

To determine the bi-moment  and the torsion 
angle  the following formula was used:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(17)

where:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(18)
Fig. 1. Geometrical cross-section scheme

Fig. 2. Loaded sections schemes of the analysed problem
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The functions of the bi-moment Bω and the tor-
sional moment ms will be calculated after solving 
the diff erential equation for the torsion angle ψ. 
When the factor ϑl is suffi  ciently small, this equa-
tion can be simplifi ed considerably by assuming 
that GIS = 0. The multiplier GI_S is neglected if:
• for double-sided fork support (ψ = ψ'' = 0), 

ϑl < 0.75.
• for full restraint on both sides (ψ = ψ' = 0), 

ϑl < 1.50.
• for one end free and the other fully restrained, 

ϑl < 0.50.

The boundary conditions in the considered 
case for the free-supported beam (ψ(0) = ψ(l) = 
0, ψ''(0) = ψ''(l) = 0) correspond to the fork sup-
port conditions. Therefore, the coeffi  cient ϑl was 
analysed in terms of fork support:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(19)

Due to the support conditions, the diff erential 
equation for the torsional angle takes the form:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

 

 

𝜗𝜗𝜗𝜗𝜗𝜗𝜗𝜗 = 𝜗𝜗𝜗𝜗�
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

= 𝜗𝜗𝜗𝜗�
(1 − 𝜐𝜐𝜐𝜐)𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

2𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 

 

𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗2

8
 

 

𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔 =
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝜗𝜗𝜗𝜗

2
 

 

𝜅𝜅𝜅𝜅 =
𝜏𝜏𝜏𝜏𝜔𝜔𝜔𝜔
𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧

 

 

𝜌𝜌𝜌𝜌 =
𝜎𝜎𝜎𝜎𝜔𝜔𝜔𝜔
𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥

 

 

 

(20)

The boundary conditions in the considered 
case (ψ(0) = ψ(l) = 0, ψ''(0) = ψ''(l) = 0) correspond 
to those of a simply supported beam (w(0) = w(l) 
= 0, w''(0) = w''(l) = 0). Due to this analogy the 
diagrams of Bω and Mω, shown in Figure 4, can be 
created. With the analogy of a simply supported 
beam, the formula for the value of the bimoment at 
mid-span of the beam can be determined:

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔

±
𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇

 

 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = (𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3) = �
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
2

,
𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝
4

, 0� 

 

𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆 = 𝑞𝑞𝑞𝑞𝑝𝑝𝑝𝑝�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠ℎ� 

 

�
𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔′′ − 𝜗𝜗𝜗𝜗 ∙ 𝐵𝐵𝐵𝐵𝜔𝜔𝜔𝜔 = 𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝜓𝜓𝜓𝜓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜗𝜗𝜗𝜗2 ∙ 𝜓𝜓𝜓𝜓′′ =
𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
 

 

𝜗𝜗𝜗𝜗2 =
𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
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Furthermore, the formula for warping-tor-
sional moment near the beam supports may be 
specifi ed as:
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Research program

The process of the analysis was started by the 
determination of geometrical characteristics of 
sigma sections considering cross-sections with 
sharp edges according to [7]. Subsequently, the 
values of bi-moment, as well as normal and shear 
stresses, were concluded. Finally, the comparison 

Fig. 3. Location of the calculation points on the beam cross-section

Fig. 4. The diagrams of bi-moment, torsional 
moment, and torsional warping moment 

for simply supported beam
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analysis was carried out. Figure 5 shows the fl ow-
chart of the analysis process.

Numerical calculations

The results of numerical calculations were 
collected in Tables 1– 9. Figure 6 presents the 
diagrams of shear stresses from shear forces and 
warping torsion, as well as normal stresses from 

bending and warping torsion for the one select-
ed case of considered several examples namely 
Σ200×2.00 cross-section for load in the middle of 
the fl ange. The shear stresses from shear forces 
and warping torsion, as well as normal stresses 
from bending and warping torsion for the one se-
lected case of considered several examples name-
ly Σ200x2.00 cross-section for load near the web 
are presented in Figure 7.

Fig. 5. The fl owchart of analysis process 

Table 1. Stress values of the Σ200×2.00 section – load in the middle of the fl ange 
Section BP/S200x2.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b1 = bp/2

Point
0 80.88 -176.65 0.00 0.00
1 93.64 -144.47 -1.06 1.16
2 93.64 99.33 -1.79 -7.19
3 62.59 101.84 -3.41 -8.23
4 43.33 40.23 -4.55 -9.74
5 -43.33 -40.23 -4.55 -9.74
6 -62.59 -101.84 -3.41 -8.23
7 -93.64 -99.33 -1.79 -7.19
8 -93.64 144.47 -1.06 1.16
N -80.88 176.65 0.00 0.00

Table 2. Stress values of the Σ200×2.00 section – load in the quarter of the fl ange 
Section BP/S200x2.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b2 = bp/4

Point
0 80.88 -82.47 0.00 0.00
1 93.64 -67.45 -0.50 1.16
2 93.64 46.37 -0.84 -7.19
3 62.59 47.54 -1.59 -8.23
4 43.33 18.78 -2.12 -9.74
5 -43.33 -18.78 -2.12 -9.74
6 -62.59 -47.54 -1.59 -8.23
7 -93.64 -46.37 -0.84 -7.19
8 -93.64 67.45 -0.50 1.16
n -80.88 82.47 0.00 0.00
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Table 3. Stress values of the Σ200×2.00 section – load near the web (in point 7)
Section BP/S200x2.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b3 = 0

Point
0 80.88 11.71 0.00 0.00
1 93.64 9.58 0.07 1.16
2 93.64 -6.58 0.12 -7.19
3 62.59 -6.75 0.23 -8.23
4 43.33 -2.67 0.30 -9.74
5 -43.33 2.67 0.30 -9.74
6 -62.59 6.75 0.23 -8.23
7 -93.64 6.58 0.12 -7.19
8 -93.64 -9.58 0.07 1.16
n -80.88 -11.71 0.00 0.00

Table 4. Stress values of the Σ200×2.50 section – load in the middle of the flange 
Section BP/S200x2.50, Span L = 4.00 m, Load q = 2.00 kN/m, Location b1 = bp/2

Point
0 65.72 -140.56 0.00 0.00
1 75.84 -115.59 -0.83 0.91
2 75.84 79.11 -1.41 -5.76
3 50.86 81.56 -2.69 -6.57
4 35.21 31.96 -3.60 -7.80
5 -35.21 -31.96 -3.60 -7.80
6 -50.86 -81.56 -2.69 -6.57
7 -75.84 -79.11 -1.41 -5.76
8 -75.84 115.59 -0.83 0.91
n -65.72 140.56 0.00 0.00

Table 5. Stress values of the Σ200x2.50 section – load in the quarter of the flange 
Section BP/S200x2.50, Span L = 4.00 m, Load q = 2.00 kN/m, Location b2 = bp/4

Point
0 65.72 -64.49 0.00 0.00
1 75.84 -53.03 -0.38 0.91
2 75.84 36.30 -0.65 -5.76
3 50.86 37.42 -1.24 -6.57
4 35.21 14.66 -1.65 -7.80
5 -35.21 -14.66 -1.65 -7.80
6 -50.86 -37.42 -1.24 -6.57
7 -75.84 -36.30 -0.65 -5.76
8 -75.84 53.03 -0.38 0.91
n -65.72 64.49 0.00 0.00

Table 6. Stress values of the Σ200x2.50 section – load near the web (in point 7)
Section BP/S200x2.50, Span L = 4.00 m, Load q = 2.00 kN/m, Location b3 = 0

Point
0 65.72 11.59 0.00 0.00
1 75.84 9.53 0.07 0.91
2 75.84 -6.52 0.12 -5.76
3 50.86 -6.72 0.22 -6.57
4 35.21 -2.63 0.30 -7.80
5 -35.21 2.63 0.30 -7.80
6 -50.86 6.72 0.22 -6.57
7 -75.84 6.52 0.12 -5.76
8 -75.84 -9.53 0.07 0.91
n -65.72 -11.59 0.00 0.00
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Table 7. Stress values of the Σ200x3.00 section – load in the middle of the flange 
Section BP/S200x3.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b1 = bp/2

Point
0 55.64 -116.44 0.00 0.00
1 63.98 -96.28 -0.67 0.75
2 63.98 65.60 -1.15 -4.80
3 43.05 68.00 -2.21 -5.47
4 29.81 26.42 -2.97 -6.51
5 -29.81 -26.42 -2.97 -6.51
6 -43.05 -68.00 -2.21 -5.47
7 -63.98 -65.60 -1.15 -4.80
8 -63.98 96.28 -0.67 0.75
n -55.64 116.44 0.00 0.00

Table 8. Stress values of the Σ200x3.00 section – load in the quarter of the flange
Section BP/S200x3.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b2 = bp/4

Point
0 55.64 -52.43 0.00 0.00
1 63.98 -43.36 -0.30 0.75
2 63.98 29.54 -0.52 -4.80
3 43.05 30.62 -1.00 -5.47
4 29.81 11.90 -1.34 -6.51
5 -29.81 -11.90 -1.34 -6.51
6 -43.05 -30.62 -1.00 -5.47
7 -63.98 -29.54 -0.52 -4.80
8 -63.98 43.36 -0.30 0.75
n -55.64 52.43 0.00 0.00

 
Table 9. Stress values of the Σ200x3.00 section – load near the web (in point 7)

Section BP/S200x3.00, Span L = 4.00 m, Load q = 2.00 kN/m, Location b3 = 0

Point
0 55.64 11.57 0.00 0.00
1 63.98 9.57 0.07 0.75
2 63.98 -6.52 0.11 -4.80
3 43.05 -6.76 0.22 -5.47
4 29.81 -2.63 0.29 -6.51
5 -29.81 2.63 0.29 -6.51
6 -43.05 6.76 0.22 -5.47
7 -63.98 6.52 0.11 -4.80
8 -63.98 -9.57 0.07 0.75
n -55.64 -11.57 0.00 0.00

For the same thickness, it can be observed 
that the normal stresses from warping torsion 
are roughly 50% higher when the load is posi-
tioned in the middle of the flange than when 
the load is located in the quarter of the flange. 
However, for the same thickness, the differ-
ence is approximately 10–15 times greater 
when the load is located in the middle of the 
flange and near the web. Furthermore, the nor-
mal stresses from warping torsion for mid-span 
cross-sections reached approximately 6–10% 

of the bending stresses for cases with load near 
the web. A value of approximately 89–93% 
was observed for cases with load in the middle 
of the flange. Finally, for cases with load in 
the flange quarter, the value ranged between 
40 and 43%.

In the case of shear stresses, the stresses 
force from different load placement lwas up to 
about 30 times greater than the shear stresses 
from warping torsion, depending on the thick-
ness of the wall and load location.
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Fig. 6. Diagrams for a) the shear stresses from forces in “z” direction, b) the shear stress-
es from torsional warping, c) normal stresses from bending, d) normal stresses from tor-

sional warping for Σ200×2.00 considering load in the middle of the fl ange

By comparing Figures 6 and 7, it is clear that 
for load close to the web, the normal and shear 
stress values caused by warping are relatively 
small and have little importance in bearing capac-
ity, meanwhile for load in the middle of the fl ange 
shear and normal stresses from torsional warping 
are more signifi cant. 

FREE AND WARPING TORSION STRESSES

From an engineering and scientifi c point of 
view, it seems very interesting to determine the 
eff ect of stresses resulting from additional tor-
sion, including warping torsion in the load capac-
ity of the cross-section. Hence the estimation of 
the contribution of shear stresses determined for 
warping torsion and shear forces were expressed 
in the form of the parameter κ:
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Figure 8 shows the  parameter change for each 
point on mid-span sigma cross-sections describ-
ing the contribution of shear stresses from warp-
ing torsion and shear forces concerning diff erent 
load locations for Σ200x2.00. Similar values may 
be noted for Σ200×2.50 and Σ200×3.00.

It should be noted that for the same thickness 
the  load location heavily infl uences the parame-
ter. Furthermore, the greatest diff erence in param-
eter κ can be seen on points l and 8, both located 
on the opposite corner of the cross-section, at the 
end of the fl ange.

A similar analysis for load in the middle of 
the fl ange was carried out. Figure 9 depicts the 
variation of the parameter  concerning diff erent 
wall thicknesses of Σ200.

Fig. 7. Diagrams for a) the shear stresses from forces in “z” direction, b) the shear 
stresses from torsional warping, c) normal stresses from bending, d) normal stress-

es from torsional warping for Σ200×2.00 considering load near the web
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Fig. 8. Contribution of warping torsion and shear forces concerning diff erent load locations for Σ200×2.00

For the load located at the centre of the 
flange, the parameter  is not much different, 
which proves that in this case, the section 
thickness has little effect on the shear stresses 
from warping torsion and shear forces. Figure 
10 depicts the κ parameter values for each point 
on mid-span sigma cross-sections, demonstrat-
ing how different wall thickness of S200 af-
fects warping torsion and shear forces for load 
located near the web.

The parameter  for the load near the end of 
the fl ange varies considerably with wall thick-
ness. The greatest diff erences in contribution 
between shear stress from warping torsion and 
shear force from load location can be observed 
for the thickest wall.

Overall, it can be concluded that the infl u-
ence of shear stresses from warping torsion τω
is theoretically not so signifi cant, however it 
should not be neglected in the case of the sigma 

cross-section, as it diff ers with diff erent load lo-
cation. Moreover, it is especially critical for el-
ements with thicker walls and the load located 
close to the web.

In next step, in order to formulate the relation 
between the normal stresses caused by warping 
and bending the  parameter was formulated: 

𝜏𝜏𝜏𝜏 =
𝑉𝑉𝑉𝑉𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑦𝑦𝑦𝑦

±
𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧

±
𝑀𝑀𝑀𝑀𝜔𝜔𝜔𝜔𝑆𝑆𝑆𝑆𝜔𝜔𝜔𝜔
𝑡𝑡𝑡𝑡𝐼𝐼𝐼𝐼𝜔𝜔𝜔𝜔
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𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇
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A normal stresses ratio is represented in 
Figure 11 for points located on mid-span sigma 
cross-section for Σ200×2.00 with respect to the 
diff erent load location.

For the load located in the middle of the 
fl ange, the normal stresses from warping tor-
sion were up to approximately 220% of the 
stresses from bending, as it can be observed in 
Figure 11. Furthermore, it was found that for 
load location near the web, the normal stresses 

Fig. 9. Contribution of warping torsion and shear forces to load in the mid-
dle of the fl ange for diff erent wall thicknesses of Σ200 
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Fig. 10. Contribution of warping torsion and shear forces to load near the 
web for diff erent wall thicknesses of Σ200 (in point 7) 

Fig. 12. Comparison of warping torsion and free normal stresses concerning dif-
ferent wall thickness of Σ200 for load in the middle of the fl ange

Fig. 11. Comparison of normal stresses caused by warping torsion and bend-
ing concerning diff erent load locations for Σ200×2.00
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from warping torsion are close to 0 and may 
even change their direction.

As it is seen in Figure 12, the normal stresses 
from warping torsion were up to about 220% of 
stress from bending for the load located in the mid-
dle of the fl ange. Additionally, no signifi cant dif-
ference between  for each thickness can be noted. 

For the load location near the web, the normal 
stresses from warping torsion were up to about 
21% of stresses from bending, as shown in Figure 
13. Moreover, the results of this analysis reveal that 
in comparison the impact of normal stresses from 
warping torsion σω is greater than the impact of 
shear stresses caused by warping torsion τω, espe-
cially in the case when load is placed near the web.

CONCLUSIONS

The article presents an analysis of the stress 
state referring to the theory of thin-walled mem-
bers, considering the normal and shear stresses 
from bending and torsion for three diff erent sigma 
sections: Σ200×2.00, Σ200×2.50, and 200×3.00. 
Furthermore, a stress analysis of the diff erent load 
locations at the upper fl ange was performed. Such 
a load application, as typical engineering practice, 
caused the additional torsional moment which 
should not be neglected. As an outcome, special 
attention was focused, in the paper, on bearing ca-
pacity of normal and shear stresses from warping 
torsion. It is worthy to note, that this analysis pro-
vides important insight into the complex relation-
ship between normal stresses and shear stresses 
induced by warping. Moreover, it can be used to 

Fig. 13. Comparison of warping torsion and free normal concerning diff er-
ent wall thickness of Σ200 for load near the web (in point 7)

develop an accurate bearing capacity approach 
for the sigma cross-section.

Based on the conducted examples, it was 
determined that the change in the location of 
the external load at the upper fl ange results in 
the reasonably large increase in stresses caused 
by warping. Based on the  coeffi  cient, devel-
oped in order to defi ne the contribution of the 
shear stresses caused by warping torsion and 
shear forces, it was found that the warping shear 
stresses increased for the load location in the 
middle of the fl ange. Simultaneously, based on 
the  coeffi  cient, introduced respectively to defi ne 
the contribution of the normal stresses caused by 
warping and bending, one can noticed, the simi-
lar phenomenon.

Additionally, in the paper, the infl uence of 
the wall thickness on the distribution of stress-
es was investigated. It can be noted, that for the 
thicker wall the increase in warping, as well for 
the normal and shear stresses, is observed.

Therefore, it should be pointed out, that the 
eff ect of warping defi nitely has to be taken into 
account in the case of the sigma cross-section. 
Thus neglecting the shear and normal stresses 
caused by warping can lead to the reasonably 
large mistakes. Moreover, the thickness of the 
wall can play signifi cant infl uence, especially 
when the load is located close to the web.
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